

Technical Report – R20309 Rev 1 CWCT – Standard for systemised building envelopes – 2005

Domus Facades Ltd DFS05 Support System - Rainscreen System Test

Contents

Introduction	2
Summary of Results	3
Description of Test Sample	5
Test Arrangement	8
Test Procedures	11
Test Results	13
System Drawings	23
Support Steelwork Drawing	31
Dismantling	32
Amendments	42
	Introduction

Rev 1 (Revised Report) – this report has been amended as shown in Section 10 and it replaces previous report No. R20309 dated 15th July 2020.

1. Introduction

This report describes tests carried in order to determine the weather tightness of the sample with respect to water penetration, wind and impact resistance on sample supplied as follow:

Test Details	
Customer:	Domus Facades Ltd
	St Martin's House
	27-29 Ormside Way
	Redhill
	RH1 2LT
Product Tested:	DFS05 Support System
Date of Test:	20 th January 2020
	29 th February 2020
	2 nd March 2020
Test Conducted at:	UL Telford UK Ltd
	Halesfield 2
	Telford
	Shropshire
	TF7 4QH
Test Conducted by:	K Alden- Senior Laboratory Assistant
	D Reynolds – Senior Test Engineer
	P Seymour – Laboratory Technician
Test Supervised by:	M Cox – Engineering Leader
Test Witnessed by:	C Appleby – Domus Facades Ltd

Report Authorisation	
Report Compiled by:	D Price – Senior Engineering Associate
Authorised by:	M Wass – Technical Manager

UL Telford UK Ltd is accredited by the United Kingdom Accreditation Service as UKAS Testing Laboratory No. 2223.

REPRODUCTION OF THIS DOCUMENT IN WHOLE OR ANY PART THEREOF MUST NOT BE MADE WITHOUT PRIOR WRITTEN PERMISSION FROM UL TELFORD UK LTD.

This report and the results shown within are based upon the information, drawings, samples and tests referred to in the report. The results obtained do not necessarily relate to samples from the production line of the above-named company and in no way constitute any form of representation or warranty as to the performance or quality of any products supplied or to be supplied by them. UL Telford UK Ltd or its employees accept no liability for any damages, charges, cost or expenses in respect of or in relation to any damage to any property or other loss whatsoever arising either directly or indirectly from the use of the report.

2. Summary of Results

2.1 The test methods

The test methods were in accordance with the following standards:

CWCT Standard Test Methods for Building Envelopes - December 2005	
Water Penetration – Dynamic Aero Engine	CWCT Section 7
Water Penetration – Hose	CWCT Section 9
Wind Resistance – Serviceability	CWCT Section 11
Wind Resistance – Safety	CWCT Section 12
Impact – Retention to Performance & Safety to Persons	CWCT TN 76

2.2 Summary of Results

The following summarises the results of testing carried out, in accordance with the relevant testing and classification standards.

The performance of the sample tested has been assessed against the criteria described in below standards. The results as reported will be used to determine the conformance or non-conformance with the specification without making any consideration of the uncertainty.

Test Type	Peak Test Pressure	Result	Date of Test
Test 1 – Water Penetration (Dynamic Aero Engine)	600 Pa	Pass	20.01.20
Test 2 – Water Penetration - Hose	-	Pass	20.01.20
Test 3 – Wind Resistance (Serviceability) – Backing Wall	2400 Pa	Pass	20.01.20
Test 4 – Wind Resistance (Serviceability) – Cavity	2400 Pa	Pass	20.01.20
Test 5 - Wind Resistance – Safety – Backing Wall	3600 Pa	Pass	20.01.20
Test 6 - Wind Resistance – Safety – Cavity	3600 Pa	Pass	29.02.20
Test 7 - Impact Resistance – Retention of Performance	Cat B	Class 3	02.03.20
Test 8 - Impact Resistance – Safety to Persons	Cat B	Neg Risk	02.03.20
Dismantle, Inspect & Report		Sample Passed	

More comprehensive details are reported in Section 6.

These results are valid only for the conditions under which the test was conducted.

All measurement devices, instruments and other relevant equipment were calibrated and traceable to National Standards.

3. Description of Test Sample

The description of the test sample in this section has been supplied by the customer and has not been verified by UL Telford UK Ltd.

See Section 7 for test sample drawings as supplied by Domus Facades Ltd.

Product Description

Full product name:	DFS05 Support System
Product type:	Rain screen cladding system
Product description:	Rain screen cladding system
Manufactured by:	Domus Facades Ltd

Support Framing and bracketry

Material:	6063 T6 Extruded Aluminium
Finish:	Milled
Vertical rail Ref:	Article #200-02 80*60*3mm
Horizontal rail Ref:	Article #300-00 38*60mm
Fixing method (Dead load bracket to backing	A2 stainless nut and bolt assembly
wall):	
Restraint bracket to backing wall	JT3-3-6.3 x 50 S16
Fixing Ref:	A2/SS/M12 x 50 bolt, nut and washer
Fixing method (rail to rail):	Self-drilling screws
Fixing Ref:	JT3-3-6.3 x 50 S16
Max Span between vertical rails:	600mm
Max Span between horizontal rails:	570mm
Brackets ref:	Dead Load Article #100-06 Restraint Article #100-07

Panels/tiles

Material:	Jordan's Whitbed Limestone
Material ref (source, spec):	Albion Stone
Finish:	Rubbed
Thickness:	50mm
Reinforcing:	None
Max height of panel:	564mm
Max width of panel:	994mm
Max size of panel by area (m2):	0.560m2
Fixing method:	Mortice Anchor
Bracket/clip ref:	Article #400-06 Base course bracket
	Article #400-07 Intermediate course bracket
	Article #400-08 Top course bracket
	Article #400-09 Intermediate top edge bracket
	Article #400-10 Cranked rear face bracket
Screws/fixings ref:	Security screw JT3-3-5.5 x 30 S15

Interface Details (curtain wall to window/door inserts)

Window interface detail:	Dummy window: pressed metal frame/cill

Backing Wall

Structural support type:	Steel primary structure with SFS infill 100*70*1.6mm
Insulation type:	Siderise fire barrier with Intumescent strip
Insulation thickness:	75mm
Airtight membrane:	Tyvek Supro Plus
Watertight membrane:	
Particle board detail:	12mm Cement Particle Board
Sealants and tapes:	Ottoseal S70 Sealant to Stone and Tyvek acrylic tape
	and aluminium foil tape to membrane
Fixings ref:	5*25mm wafer head screws

Drawings

Drawing/s must be provides covering the below;	DFL-20309-101
	DFL-20309-102
-Full drawing of sample including front elevation	DFL-20309-103
-Cross Sections (Panels/Rails Etc.)	DFL-20309-200
-Hardware Locations	DFL-20309-201
-Fixings	DFL-20309-202
-Drainage Points	DFL-20309-203
	DFL-20309-204
Note: drawings are required to show all relevant	DFL-20309-205
dimensions.	
Test sample size:	5m wide x 8m high

Confirmation

Customer is to confirm that the samples provided for testing are representative of standard production. Please note: the details given above, as well as the drawings supplied by the customer as confirmed as typical of normal production are not verified by UL Telford UK Ltd.

Company:	Domus Facades Ltd
Name:	Nic Shannon
Position:	Managing Director
Date:	2 nd April 2020

Sample during testing

Photograph No. 2

4. Test Arrangement

4.1 Test Chamber

A specimen, supplied for testing in accordance with CWCT requirements, was mounted on to a rigid test chamber constructed from steel, timber and plywood sheeting.

The pressure within the chamber was controlled by means of a centrifugal fan and a system of ducting and valves. The static pressure difference between the outside and inside of the chamber was measured by means of a differential pressure transmitter.

4.2 Instrumentation

4.2.1 Static Pressure

A differential pressure transmitter capable of measuring rapid changes in pressure to an accuracy within 2%, was used to measure the pressure differential across the sample.

4.2.2 Water Flow

An in-line flowmeter, mounted in the spray frame water supply system, was used to measure water flow to the test sample to an accuracy of \pm 5%.

4.2.3 Deflection

Digital linear measurement devices with an accuracy of +/- 0.1 mm were used to measure deflection of principle framing members.

4.2.4 Temperature & Humidity

A digital data logger capable of measuring temperature with an accuracy of \pm 1°C and humidity with an accuracy of \pm 5 %Rh was used.

4.2.5 Barometric Pressure

A digital barometer capable of measuring barometric pressure with an accuracy of ± 1 kPa was used.

4.2.6 General

Electronic instrument measurements were scanned by a computer-controlled data logger, which processed and recorded the results.

4.3 Pressure Generation

4.3.1 Static Air Pressure

The air supply system comprised of a centrifugal fan assembly and associated ducting and control valves and was used to create both positive and negative static pressure differentials. The fan provided a constant airflow at the required pressure and period required for the tests.

Note: References are made to both positive and negative pressures in this document, it should be noted that in these instances, positive pressure is when pressure on the weather face of the sample is greater than that on the inside face and vice versa.

4.3.2 Dynamic Aero Engine

A wind generator was mounted adjacent to the external face of the test sample and used to create positive pressure differential during dynamic testing.

4.4 Water Spray System

4.4.1 Spray frame arrangement

A water spray system was used which comprised of nozzles spaced on a uniform grid, not more than 700 mm apart and mounted approximately 400 mm from the face of the sample. The nozzles provided a full cone pattern, as per the requirements outlined by CWCT. The system delivered water uniformly to the entire surface of the test sample at a rate of not less than 3.4 lt/m²/min.

4.4.2 Hose arrangement

The water was applied using a brass nozzle which produced a solid cone of water droplets with a nominal spread of 30° . The nozzle was provided with a control valve and a pressure gauge between the valve and the nozzle. The water flow to the nozzle was adjusted to produce 22 ± 2 litre/min when the water pressure at the nozzle inlet was 220 ± 20 kPa

4.5 Impactors

4.5.1 Soft (S1) Body Impactor

A spherical/conical, glass bead filled impactor with a mass of 50 Kg, as required in CWCT TN76

4.5.2 Hard (H2) Body Impactor

A steel ball with a diameter of 62.5 mm and a mass of 1.135 Kg, was released from the height, calculated to result in the required impact energies and allowed to fall under gravity until it impacted the designated test zone of the sample.

All measurement devices, instruments and other relevant equipment were calibrated and are traceable to National Standards.

Figure 1 – Test arrangement

Data logger records all data during tests

5. Test Procedures

5.1 Sequence of Testing

- Test 1 Water Penetration Dynamic Aero Engine
- Test 2 Water Penetration Hose
- Test 3 Wind Resistance Serviceability Backing Wall
- Test 4 Wind Resistance Serviceability Cavity
- Test 5 Wind Resistance Safety Backing Wall
- Test 6 Wind Resistance Safety Cavity
- Test 7 Impact Resistance Retention of Performance
- Test 8 Impact Resistance Safety to Persons

5.2 Water Penetration

5.2.1 Water Penetration – Dynamic Aero Engine

Water was sprayed on to the sample as described in section 4.4.1.

The sample was subjected to airflow from the wind generator, as described in 4.3.2, which achieved average deflections equal to those produced at a static pressure differential of 600 Pa and these conditions were met for the specified 15 minutes.

The interior face of the sample was continuously monitored for water ingress throughout the test.

5.2.2 Water Penetration – Hose

Working from the exterior, the window pod interface detail between the window and SFS backing wall was wetted from the bottom up, progressing from the lowest horizontal joint then the intersecting vertical joints.

Water was applied to the sample for 5 mins per 1.5 m length of joint, as described in section 4.4.2.

Throughout the water penetration testing, and for 30 minutes following the cessation of spraying, the internal face of the sample was examined for water penetration. The emergence of any water on the inside face would be recorded, and the location and extent of any leakage noted on a drawing of the test specimen.

5.3 Wind Resistance

5.3.1 Wind Resistance - Serviceability

Three (3) preparatory pulses of 1200 Pa (50% of design wind load) positive pressure were applied to the test sample. Upon returning to 0 Pa, any opening parts of the test specimen were opened and closed five (5) times, secured in the closed position. All deflection sensors were then zeroed.

The sample was then subjected to positive pressure stages of 600, 1200, 1800 and 2400 Pa (25%, 50%, 75% and 100% of design wind load) and held at each step for 15 seconds (± 5 secs).

The deformation status of the sample was recorded at each step at characteristic points as stated in the standard, following which the pressure was reduced to 0 Pa and any residual deformations recorded within 1 hour of the test.

The above test sequence was then repeated, including preparation pulses, at a negative pressure differential.

Following each of the above tests, the sample was inspected for permanent deformation or damage.

5.3.2 Wind Resistance - Safety

Three preparatory positive air pressure pulses of 1200 Pa (50% of design wind load) positive pressure were applied to the test sample, and the deflection sensors were zeroed.

The sample was subjected to a positive pressure pulse of 3600 Pa (2400 Pa x 150%). The pressure was applied as rapidly as possible but in not less than 1 second and was maintained for 15 seconds (\pm 5 secs).

Following this pressure pulse and upon returning to zero (0) pressure, residual deformations were recorded and any change in the condition of the specimen was noted.

After the above sequence, a visual inspection was conducted, any moving parts were operated and any damage or functional defects noted.

The above test sequence was then repeated, including preparation pulses, at a negative pressure differential. The deflection sensors were zeroed following the preparation pulses.

Following each of the above tests, the sample was inspected for any permanent deformation or damage.

5.4 Impact Resistance

5.4.1 Impact Test Procedure – Retention of performance – CWCT TN 76

The test sample was tested using a drop height which corresponded with the required performance level.

The Impactors, as described in section 4.5.1 and 4.5.2, were suspended on a wire/Nylon cord and allowed to swing freely, without initial velocity, in a pendulum motion until they hit the sample normal to its face. Only one impact was performed at any single position during the hard body impacting and three times at each position during the soft body impacting.

Tests were conducted at the required impact energies as shown in section 6.3.1 and 6.3.2 to the selected impact points.

Drop heights were set to an accuracy of ± 10 mm.

5.4.2 Impact Test Procedure – Safety to persons – CWCT TN 76

The test sample was tested using a drop height which corresponded with the required performance level.

The Impactors, as described in section 4.5.1 and 4.5.2 were suspended on a wire/Nylon cord and allowed to swing freely, without initial velocity, in a pendulum motion until they hit the sample normal to its face. Only one impact was performed at any single position.

Tests were conducted at the required impact energies as shown in section 6.3.3 and 6.3.4 to the selected impact points and the impactors were not allowed to strike the sample more than once.

Drop heights were set to an accuracy of \pm 10 mm.

6. Test Results

6.1 Water Penetration

6.1.1 Test 1 - Water Penetration – Dynamic Aero Engine

Temperatures (%C)	Water	7.3		
Temperatures (C)	Ambient	2.0		
Time Tested - M	15			

Observations

The sample was subjected to testing as described in section 5.2.1, for a period of not less than 15 minutes, during which no water leakage was observed through the sample.

6.1.2 Test 2 – Water Penetration – Hose

The sample was subjected to hose testing, as described in section 5.2.2. During the test, and for 30 minutes following the cessation of spraying, the sample was monitored for water ingress and none was found.

Figure 2

	<u>Hose</u>	Test Are	as		
		-			
A10 A9	SENQ A9	Saka	A9	A9	25%a A10
A9 6	4 58 A9 994 6	≪ A9 944 ≛	58Kg А9 904	56Ku A	(9 94
29%9 68%9 A10 A9 494 904	6 A9 994	5aKg	A9 6	A9 894 6	29%p A10 494
A7	A7	A7	A7	A	7
A8 6 A7	51Kg A7 994	Ô.	A7 6	A7 6	A8 494
A7 6	A7 8	A7 0	A7	8 A	.7 94
A5	A5 A	5 A	5 A	\5	A5
A6 A5	^{ssка} А5	A5	A5	stxe A5	Аб
A5 6	A5 6 A5 827 82	55Kg 6 A	5 <u>6</u> A	5 <u>6</u> 27	A5 827
A6 6 A5 414 827	^{55Кр} 6 А5 827	85Ke 8 A5 8 7	55%g 6 A5 827	55Ke A5 827	A6 408
A 65Kg	A 74	A4	езка	65Kg	.
33жа 65ка А1 А	35Kg A3	STONE OF	Ka 65Ka A3	A	зэк _е А1
65Kg 719	A2	006 STONE OPE	K0 A2	eska A	
33Кр 65Кр А1 <u>8</u> А 494	ббжа А		A 65%2	A e	зэке А1 494
A est	A KD	4	45Kg	esxa A	
		-	-		

View from Outside Not to Scale

6.2 Wind Resistance

Probe Group Identification	Calculation of deflection
Group A comprised of probes 1, 2 & 3	= Probe 2 – ((Probe 1 + Probe 3)/2)

An inspection carried out following tests 3, 4, 5 and 6, after both positive and negative pressure testing, showed no evidence of any permanent deformation or damage to the test sample.

Positions of Deflection Measurement Probes

Figure 3

350	5864	58%0		585.0		58Ka	-	298.0
A10	A9		A9		A9	AS		A10
58Kg	58K		58Kg		58Kg	<u> </u>	akg	2
AS	8	A9	e .	A19 6		A9 e	A	9
360	saka	SBKg	-	50×2	1	50Kg	84	4 29Kg
A10	A9		A9		A9 .	AS		A10
404	294	<u> </u>	994 3	1	994	2 884	164	494
A7		A7		A7		A7	A	7
ISKa	51Kg	51Kg		51Kg		51Kg	1	25Kg
A8 8	A7 994	0	A7 1	4	A7 6	A7	8	A8 494
SIKe	516		Sike	4	STKg		ing a	-
99	8	994	0	994 6	+ (104 B	99	4
SSKQ.	6562	5	tika	SSKQ	sp	re	SSKQ	
A5		A5	A5	1	45	A5		A5
SKg SS		55Kg	55Ke	_	55Kg	55Kg		55Kg
A6	A5	A5	11035	AS	A5	1000	A5	A6
siskg	SSKQ	1	ska	SEKO	55	KQ .	55KQ	
A5		A5	6 A5	6 A	5	A5		A5
827 55g 55	4	55Kg	0.2.7 55Kp	1 8	55Kg	55Kg	1	95Kg
A6	A5	A5		AS	A5		A5	A6
414	827	827		827	827	-	827	408
65KQ	65K	2 () 	74Kg		65Kg		5Kg	
A		A		A#	1	A	A	
13Kg	б5Ка	35Kg		- W	35Kg	65Kg	1	33Kg
A1	A	A	3	NE O	A3	A		A1
				6 STO				
iską	716		10	10	71Kg		SKa	
A	2	AZ	1000 ST	UNE OPE	1 '	42	A	
12Kg	SSKg 🔴 🦷	65Kg		1000		GEKg		33Kg
A1 -	<u>a</u> /	•1	A		A	A	8	A1 494
isko	65K	· · ·	stike	-	65Kg	- P	iska	0
A	1	A		A		A	A	
		2.4		- No.				

- Deflection probe position

View from Outside Not to Scale

6.2.1 Tests 3 & 4 - Wind Resistance, Serviceability

Temperatur	es (°C)	Ambient		5.5	
Measured Length of			AI	lowable De	eflection
Framing Me	ember (mm)) Ratio		C	alculated (mm)
Group A	800		L/360 or 3	3mm	2.2

Frontal deflection shall recover by either 95%, or 1mm, whichever the greater.

6.2.1.1 Wind Resistance, Serviceability - Positive Pressure

Positive Pressure	Results
Ра	Group A
0	0.0
600	0.1
1200	0.2
1800	0.1
2400	0.1
Residuals Immediately	0 1
following test	0.1

6.2.1.2 Wind Resistance, Serviceability - Negative Pressure

Negative Pressure	Results
Ра	Group A
0	0.0
600	0.1
1200	0.1
1800	0.2
2400	0.0
Residuals Immediately following test	0.0

6.2.2 Tests 5 & 6 - Wind Resistance, Safety

Test Date	20.01.20	29.02.20
Temperatures (°C)	6.0	8.4

Measured Length of		Allowable Residu	al Deformation
Framing Member (mm)		Ratio	Calculated (mm)
Group A	800	L/500	1.6

6.2.2.1 Wind Resistance, Safety - Positive Pressure

Positive Pressure	Results
Ра	Group A
0	0.0
3600	0.9
Residuals Immediately following test	0.1

6.2.2.2 Wind Resistance, Safety - Negative Pressure

Negative Pressure	Results
Ра	Group A
0	0.0
3600	0.0
Residuals Immediately	0.9
ionowing test	

Note: The standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%, for the above measurements is ± 2.4 % of the reading

6.3 Impacting

6.3.1 Test 7 – Impact – Retention of Performance & Safety to Persons (Soft Body S1)

Ambient Temperatures (°C)	8.8
Humidity (%RH)	60

Impact Category	Cat B		
Impact Energy	120 Nm	500 Nm	
Class Achieved	Class 1	Negligible Risk	

Retention of Performance							
Impact Reference	Test Category	Impactor Type	Impact Energy (Nm)	Drop Height (mm)	Observations	Result	
1A	Cat B	Soft Body (S1)	120	245	No Damage	Class 1	
2B	Cat B	Soft Body (S1)	120	245	No Damage	Class 1	
3C	Cat B	Soft Body (S1)	120	245	No Damage	Class 1	
4D	Cat B	Soft Body (S1)	120	245	No Damage	Class 1	
5E	Cat B	Soft Body (S1)	120	245	No Damage	Class 1	
6F	Cat B	Soft Body (S1)	120	245	No Damage	Class 1	
7G	Cat B	Soft Body (S1)	120	245	No Damage	Class 1	
8H	Cat B	Soft Body (S1)	120	245	No Damage	Class 1	
91	Cat B	Soft Body (S1)	120	245	No Damage	Class 1	
10J	Cat B	Soft Body (S1)	120	245	No Damage	Class 1	
11K	Cat B	Soft Body (S1)	120	245	No Damage	Class 1	
12L	Cat B	Soft Body (S1)	120	245	No Damage	Class 1	
13M	Cat B	Soft Body (S1)	120	245	No Damage	Class 1	

14N	Cat B	Soft Body (S1)	120	245	No Damage	Class 1
150	Cat B	Soft Body (S1)	120	245	No Damage	Class 1
16P	Cat B	Soft Body (S1)	120	245	No Damage	Class 1
17Q	Cat B	Soft Body (S1)	120	245	No Damage	Class 1
18R	Cat B	Soft Body (S1)	120	245	No Damage	Class 1
19S	Cat B	Soft Body (S1)	120	245	No Damage	Class 1
20T	Cat B	Soft Body (S1)	120	245	No Damage	Class 1

	Safety to Persons							
Impact Reference	Test Category	Impactor Type	Impact Energy (Nm)	Drop Height (mm)	Observations	Result		
21A	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
22B	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
23C	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
24D	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
25E	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
26F	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
27G	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
28H	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
291	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
30J	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
31K	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
32L	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
33M	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
34N	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
350	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
36P	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
37Q	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
38R	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
395	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		
40T	Cat B	Soft Body (S1)	500	1020	No Damage	Negligible Risk		

Photograph No. 3

During the above test, no damage was observed.

Photograph No. 4

During the above test, no damage was observed.

Photograph No. 5

During the above test, no damage was observed.

6.3.2 Test 7 – Impact – Retention of Performance & Safety to Persons (Hard Body H2)

Ambient Temperatures (°C)	8.8
Humidity (%RH)	60

Impact Category	Cat B	
Impact Energy	10 Nm	10 Nm
Class Achieved	Class 3	Negligible Risk

Retention of Performance								
Impact Reference	Test Category	Impactor Type	Impact Energy (Nm)	Drop Height (mm)	Observations	Result		
41A	Cat B	Hard Body (H2)	10	898	No Damage	Class 1		
42B	Cat B	Hard Body (H2)	10	898	No Damage	Class 1		
43C	Cat B	Hard Body (H2)	10	898	No Damage	Class 1		
44D	Cat B	Hard Body (H2)	10	898	No Damage	Class 1		
45E	Cat B	Hard Body (H2)	10	898	No Damage	Class 1		
46F	Cat B	Hard Body (H2)	10	898	No Damage	Class 1		
47G	Cat B	Hard Body (H2)	10	898	Cracked across corner 130mm up 140mm across	Class 3		
48H	Cat B	Hard Body (H2)	10	898	Cracked corner up 30mm across 40mm, powder fell away 23g	Class 3		
491	Cat B	Hard Body (H2)	10	898	Dint in face of stone	Class 2		
50J	Cat B	Hard Body (H2)	10	898	Dint in face of stone	Class 2		
51K	Cat B	Hard Body (H2)	10	898	Cracked corner 20mm by 20mm	Class 3		
52L	Cat B	Hard Body (H2)	10	898	Surface crack	Class 2		
53M	Cat B	Hard Body (H2)	10	898	Dint in face of stone	Class 2		
54N	Cat B	Hard Body (H2)	10	898	Scuff	Class 2		
550	Cat B	Hard Body (H2)	10	898	Scuff	Class 2		
56P	Cat B	Hard Body (H2)	10	898	Scuff	Class 2		
57Q	Cat B	Hard Body (H2)	10	898	Dint in face of stone and surface crack	Class 2		
58R	Cat B	Hard Body (H2)	10	898	No Damage	Class 1		
59S	Cat B	Hard Body (H2)	10	898	Dint	Class 2		
60T	Cat B	Hard Body (H2)	10	898	No Damage	Class 1		

	Safety to Persons								
Impact Reference	Test Category	Impactor Type	Impact Energy (Nm)	Drop Height (mm)	Observations	Result			
41A	Cat B	Hard Body (H2)	10	898	No Damage	Negligible Risk			
42B	Cat B	Hard Body (H2)	10	898	No Damage	Negligible Risk			
43C	Cat B	Hard Body (H2)	10	898	No Damage	Negligible Risk			
44D	Cat B	Hard Body (H2)	10	898	No Damage	Negligible Risk			
45E	Cat B	Hard Body (H2)	10	898	No Damage	Negligible Risk			
46F	Cat B	Hard Body (H2)	10	898	No Damage	Negligible Risk			
47G	Cat B	Hard Body (H2)	10	898	Cracked across corner 130mm up 140mm across	Negligible Risk			
48H	Cat B	Hard Body (H2)	10	898	Cracked corner up 30mm across 40mm, powder fell away 23g	Negligible Risk			
491	Cat B	Hard Body (H2)	10	898	Dint in face of stone	Negligible Risk			
50J	Cat B	Hard Body (H2)	10	898	Dint in face of stone	Negligible Risk			
51K	Cat B	Hard Body (H2)	10	898	Cracked corner 20mm by 20mm	Negligible Risk			
52L	Cat B	Hard Body (H2)	10	898	Surface crack	Negligible Risk			
53M	Cat B	Hard Body (H2)	10	898	Dint in face of stone	Negligible Risk			
54N	Cat B	Hard Body (H2)	10	898	Scuff	Negligible Risk			
550	Cat B	Hard Body (H2)	10	898	Scuff	Negligible Risk			
56P	Cat B	Hard Body (H2)	10	898	Scuff	Negligible Risk			
57Q	Cat B	Hard Body (H2)	10	898	Dint in face of stone and surface crack	Negligible Risk			
58R	Cat B	Hard Body (H2)	10	898	No Damage	Negligible Risk			
595	Cat B	Hard Body (H2)	10	898	Dint	Negligible Risk			
60T	Cat B	Hard Body (H2)	10	898	No Damage	Negligible Risk			

Photograph No. 6

Showing damage caused following hard body (H2) impact of 10 Nm.

The above damage resulted in a Class 3 being achieved during the Retention of performance test.

Photograph No. 7

Showing damage caused following hard body (H2) impact of 10 Nm.

The above damage resulted in a Class 3 being achieved during the Retention of performance test.

Photograph No. 8

Showing damage caused following hard body (H2) impact of 10 Nm.

The above damage resulted in a Class 2 being achieved during the Retention of performance test.

Photograph No. 9

The above damage resulted in a Class 2 being achieved during the Retention of performance test.

6.3.3 Impact Locations

29Kg 58K	9 	58Kg	SBIKg		58Kg		ISKg
A10	A9	A9		A9	A	9	A10
58Kg	58Kg	50	sкg	58Kg		58Kg	
A9	8	A9 6	A9	6	A9 6	AS	
29Kg 58K	ia -	58Kg	58Kg	-	58Kg	884	i9Kg
A10	A9 6	A9	6	A9	6 A	9 6	A10
494	994	994	Ke like	994	2 99	4 5 1Ko	494
A7		A7	A7	100	A7	A7	
25Kg 518	(n)	5160	5180		StKa		580
A8 e	A7 6	A7		A7	e A	7 6	A8
494	994	994		994	1 99	4 5 1Kg	494
A7	8	A7 8	A7	6	A7 a	A7	
994	5580	994	994	<u> </u>	994	994	
AF	45		5	45	45		NF.
AJ	~ ~		5	~5	A3		2
55Kg 55Kg	55Kg		55Kg	55Kg	55Kg	-12	SSKg -
A6	A5	A5	A5	A	5	A5	A6
55Kg	55Kg	SSKg	SSKQ		SSKg	SSKg	
A5 827	6 A5 827	- 6 A	5	A5 827	6 A5 827	6 8	27
55Kg 55Kg	SSK	1	55Kg	SSKg	55Kg	1	55Kg
A6 . 6	A5 . 6	A5	6 A5	6 A	5 . 6	A5	A6
414	827	827	827	82	27	827	408
65Kg	65Kg	74	Ka	65Kg		65Kg	
A		A	A		A	A	
33Kg 65K	G	35Kg		35Кр	65Kg	3	13Kg
A1	A	A3		A3	A		A1
14.14			010				
65Kg	71Kg	-	10	10 71Kg	1.1.1	65Kg	
A		A2 ,	의 STONE OP	* *	A2	A	
33Kg 65K	ia I	65Kg	D.Neo	ŧ⊒ N●	65K	 	I3Kg
A1 6	A. Be	•C .	E e e l	• M	0	R e	A1
494		D	Ge el	I OL	Q		494
65Kg	65Kg	65	жа р		•	65K	
A		A	A	J 🔽	Α '	A	
							-

